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Abstract - Correlation of science results from multi-disciplinary communities is a difficult task.
Traditionally, data from science missions is archived in proprietary data systems that are not interoperable.
The Object Oriented Data Technology (OODT) task at the Jet Propulsion Laboratory is working on
building a distributed product server as part of a distributed component framework to allow heterogeneous
data systems to communicate and share scientific results. These components communicate using a standard
metadata interchange language. This provides an excellent vehicle for turning data into information and
allowing for data in unique formats to be correlated and exchanged. Advances in Internet and distributed
object technologies provide an excellent framework for sharing data across multiple data systems. The
product server component of the OODT framework allows for results to be interchanged between native
data system formats and the framework using an XML-based query language. The product server
component wraps data system interfaces, which abstracts away the data system unique interfaces, and
provides a scalable architecture by providing query handlers that facilitate the interchange of queries and
results. This paper, the second in a series on the OODT task, focuses on the development of the product
server component using the Planetary Data System (PDS) as an example system. This continues the
discussion of an enterprise framework that allows for data system interoperability across multiple science

disciplines.

1. Introduction

Science data has continued to devolve into a
large set of highly fragmented distributed data
systems. These systems are heterogeneous and
geographically distributed making
interoperability and integration difficult.
Furthermore, correlating science data across a
multi-disciplinary environment is even more
challenging. The Object Oriented Data
Technology task at the Jet Propulsion Laboratory
is currently researching a distributed framework
that will allow for data products from distributed
data systems to be located and retrieved.

Data systems across NASA are heterogeneous in
nature. They have traditionally followed stove
pipe implementations, and there has been very
little integration across these systems. The
implementations are often unique, and there is no
standard mechanisms for data interchange

between these systems. However, one NASA
system, the Planetary Data System (PDS), has
developed an archive standards architecture that
provides a good metadata foundation for
developing the proposed data interchange
mechanism

The Planetary Data System (PDS) manages and
archives planetary science data for NASA’s
Office of Space Science. In existence since the
late 1980s, the PDS early on developed a
standards architecture that included a formal
enterprise model, a means for collecting and
assoclating metadata with science data products,
and a peer review process for ensuring data and
metadata validity. This active science data
archive currently has over five terabytes of data
curated by six distributed science nodes and
stored and distributed on CD and DVD media.
The standards architecture as proven to be
critical to maintaining consistency archive across
the various science domains represented in the



planetary science community and for supporting
a level of interoperability across the nodes. For
example, the archive includes a diversity of data
products from images and time series to
spectrum. These products are stored in a variety
of data and machine formats and are served from
heterogeneous hardware platforms. However the
metadata used for searching and describing the
resulting data products is consistent due to the
standards architecture. The metadata is presented
in a common interchange language supported by
a common data dictionary.

The PDS experience in developing and enforcing
metadata standards as proven to be a critical
element in maintaining consistency across the
distributed system. The advent of the internet
and web technology as now affords an excellent
opportunity to exploit this metadata to provide a
new level of interoperability both within the PDS
nodes as well as with other space science data
systems. The OODT task is currently working
with the Planetary Data System to provide a data
architecture that allows for data products within
the PDS to be located and exchanged across the
distributed nodes using a common user interface.
We also feel that the methodology being
developed will directly address the data system
interoperability problems now being encountered
in general.

1I. Architecture

The OODT architecture has several key
architectural objectives which include

(1) requiring that individual data systems be
encapsulated to hide uniqueness; (2) requiring
that communication between distributed services
use metadata for data interchange; (3) defining a
standard data dictionary based on a metadata for
describing data resources; (4) providing a
solution that is both scalable and extensible; (5)
providing a standard mechanism for exchanging
data system product results across distributed
services.

The product service is part of a larger component
framework [16], which includes a query, profile
and product server. Profile and product service
instances are distributed across the enterprise and
manage information and access to a set of data
system resources. A key benefit of this
architecture is that new service instances can be
introduced in order to scale the system. The basic
system architecture is illustrated in Figure 1.
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Figure 1: System Architecture

The profile server manages profiles—sets of
resource definitions [7]— about distributed data
systems and their products. A profile is
essentially a metadata description of the
resources known at a node in the distributed
framework. These resources are either data
products archived by an integrated data system,
or definitions of other profile nodes that manage
metadata about other data systems that can
further satisfy the query. Profiles describe nodes
of a digraph’ and may point to other profiles thus
representing arcs of the digraph.

Profiles may be grouped and served by more
than one profile server. The query components
ties this architecture together by providing and
managing the traversal of the digraph
architecture. The query component also provides
the facility to manage concurrent queries across
multiple servers order to improve performance.

The product component provides the translation
necessary to map a product retrieved from a
data-system—dependent environment into a
neutral format suitable for exchange between
systems. Product components are similar to
profile components in that they also represent
nodes of the digraph. This allows heterogeneous
data systems to be easily added without changing
the way their data is stored.

The component architecture described lends
itself naturally to a distributed object
implementation. We used the Common Object
Request Broker Architecture (CORBA) to
provide the distributed object framework and to
communicate and exchange data in



heterogeneous environments using the Internet
Inter-ORB Protocol (IIOP) [11]. This activity is
currently using an implementation of the
CORBA 2.0 standard from Object Oriented
Concepts known as Orbacus [12]. Each profile
and product server node is defined by a separate
object name (or node name). CORBA allows for
nodes to be located based on the CORBA
naming service that is included in the Orbacus
implementation. The naming service allows
objects that can satisfy the query to be specified
by name so that profiles can identify other
profiles or products in their metadata definitions.
This enables integration of the described nodes.

Each component of the architecture
communicates with other components using the
Extensible Markup Language (XML) [14] for the
data content running on top of the CORBA
implementation. One of the critical requirements
of this architecture is to provide interoperability
solutions without having to change the
implementation of each data system. Our
architecture accomplishes this goal by
encapsulating each of the individual data systems
and then using standard metadata definitions
based on XML for interoperability. This allows
various implementations ranging from the use of
relational and object database management
systems to implementations that use flat file and
home-grown databases for cataloging and storing
data products to exchange information using
XML metadata definitions.

We deployed the resource location service
entirely in the Java programming language along
with CORBA and XML [10]. Java allows for
the implementation of the object architecture and
allows the framework to be easily extended to
integrate new data systems. Java is particularly
useful in the design of the product service
component which allows new servers to be
quickly instantiated by loading additional
product translation objects at run time. This will
be explained in further detail below.

One of the goals of this architecture is to provide
a standard application programmers’ interface
(API) that will allow for generic science analysis
tools to be written that can plug into the
architecture to retrieve and correlate data from
multiple data sources. This is accomplished
using an n-tier architecture. Such architectures
split the traditional client-server model into three
layers: a user interface layer, a domain logic
layer, and a storage layer. Abstracting the
implementation away from the client allows for
the infrastructure to evolve without breaking the
tool interfaces. It also moves the domain
intelligence to the middleware components
which removes the constraint that the tools need
to have the knowledge of the protocol and
location of data systems in order to query and
retrieve data from it. Finally, the n-tier
architecture also allows the framework to plug in
additional services.

Figure 2: Component framework

In Figure 2 the framework shows general objects
that fit into the framework along with bridges to
other services that could be potentially added. In
this case, a navigation service could be added to
allow for images of Jupiter, a constantly moving
target, to be found based on metadata that
describes the right ascension and declination
(RA/DEC) of an image. Also since the
navigation service performs coordinate system
transformation, this addition illustrates how a
software component can use metadata to further
increase interoperability between domains.
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Figure 3: Profile Service Node

Figure 3 illustrates the functioning of one profile
service node within the resource location
framework. The profile server node is managing
resource profiles from multiple disciplines,
namely the Palomar Testbed Interferometer
(PTI), an astrophysics system, and the Planetary
Data System (PDS). A candidate query for an
image from the Mars Global Surveyor mission
arrives at the node from the API. A candidate
PDS resource is then identified by searching the
resource profile database. The query system will
subsequently use a PDS product delivery service
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to obtain product information from the resource.
Product information may include images, time
series data, or simply metadata information. The
product delivery service will be described in a
subsequent section of the paper.

The component architecture as described focuses
on providing a framework for solving complex
integration problems across heterogeneous data
systems. It addresses the issues of data location,
data transformation, and data exchange. The
framework provides a scalable architecture that
centers around the use of metadata. It also
allows for data systems to continue to retain their
unique attributes, yet plug into an enterprise
architecture that allows for the successful
exchange of data content through the use of
XML. By using XML this framework is able to
impose an inter-disciplinary communication
mechanism that allows for data to be shared and
exchanged.

III. Query Service

The query component of the framework serves as
the starting point for users to retrieve
information stored across distributed data nodes.
The query component’s CORBA interface
enables analysis tools to have a programmatic
entry point for entering queries and retrieving
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Figure 4: UML Diagram for Profile Search



results. In addition, we have implemented a Java
API that wraps the CORBA interface (a C++
API is forthcoming). This enables scientists and
engineers to develop their own data analysis
tools to access disparate data systems from a
single API. As more data systems are added to
the framework, existing tools can access the new
systems with no changes. Furthermore, multiple
user interfaces that access the query component
are possible. One such interface that we have
developed is a web interface. The web interface
uses the Java API to give scientists and engineers
immediate access to data systems from any
common web browser without any programming
or knowledge of what data systems to search.

The query service uses the CORBA naming
service to connect to a profile node. In general,
searches will enter the directed graph at the root
or parent node; however, the query service can
enter and search at any point in the graph.
Profiles must be registered in order to be
searched.

To execute a search, the query component
assembles an XML document describing the
characteristics of the query. The document
includes a header section that describes metadata
about the query, such as its title, description, data
dictionary, security type, and revision note.
These elements indicate to the query service any
characteristics, versioning, or special handling
required by the query. Also included in the
document are preferences on the result, such as
how the query should propagate through the
digraph, the maximum number of results, the
query itself, and a space for results. For example,
a query for "TARGET_NAME = MARS" results
in the following XML document:

<query>
<queryAttributes>
<queryld>00DT_Q070321</queryld>
<queryTitle>PDS DIS Query</queryTitle>
<queryDesc>PDS DIS Query Example</queryDesc>
<queryType>QUERY </queryType>
<queryStatusld>ACTIVE</queryStatusIld>
<querySecurityType>UNKNOWN</querySecurity Type>
<queryRevisionNote>2000-05-12</queryRevisionNote>
<queryDataDictld>PDS_DS_DD_ V1</queryDataDictld>
</queryAttributes>
<queryResultModeld>ATTRIBUTE</queryResultModeld>
<queryPropogationType>BROADCAST
</queryPropogationType>
<queryPropogationLevels>N/A</queryPropogationLevels>
<queryMaxResults>100</queryMaxResults>
<queryResults>0</queryResults>
<queryKWQString>STARGET_NAME=MARS
</queryKWQString>
<querySelectSet></querySelectSet>

<queryFromSet></queryFromSet>
<queryWhereSet>
<queryElement>
<tokenRole>elemName</tokenRole>
<tokenValue>TARGET_NAME</tokenValue>
</queryElement>
<queryElement>
<tokenRole>LITER AL</tokenRole>
<tokenValue>MARS</tokenValue>
</queryElement>
<queryElement>
<tokenRole>RELOP</tokenRole>
<tokenValue>EQ</tokenValue>
</queryElement>
</queryWhereSet>
<queryResultSet></queryResultSet>
</query>

The query string has been parsed and its
components stored in three sections of the query
structure. The queryWhereSet section encodes
query constraint terms using post-fix notation.
As can be seen in the example, the tokens
TARGET_NAME, MARS, EQ have been
included as queryElements along with tokens
indicating their roles in the query. The elements
included in this section, for example
TARGET_NAME, will be used by the resource
receiving the query to constrain the search.

The querySelectSet includes the names of
elements to be return from the query. In this
instance, since no fields have been specified, all
available elements will be returned.

The queryFromSet is encoded similar to the
queryWhereSet, except that its elements are used
to restrict resources that might receive the query.
For example, a resource identifier, its type, or
associated discipline could be provided to limit
the resources that will receive this query.

The queryResultSet is used by the resource
receiving the query to package the query results.

The Java class XMLQuery has been developed
to manage query structures. An instance can be
constructed by either providing a keyword query
string, such “TARGET_NAME = MARS”, or by
providing an existing query structure in XML
format. Additional constructors will be
implemented for other query formats. Methods
are available for accessing any of the query
elements and for putting and getting results from
the queryResultSet.

The query service "crawls" through multiple
nodes in the directed graph of resource systems
automatically, locating additional servers that



can fulfill a request for a particular item in any
number of datasets. The query service uses
"spider" objects to execute queries on each
profile’s XML description. The spider objects
are part of the scatter-gather approach: each
object can run in its own thread of execution,
maximizing the concurrency of multiple nodes in
the system. The system scatters the spiders
across nodes and gathers their results as they
become available.

Figure 4 shows a Unified Modeling Language
(UML) [2] sequence diagram for a typical
search. In the diagram, objects are shown across
the top with their lifelines dropping down as time
increases. Rectangles over the lifelines depict
when an object is active. Solid arrows show
method calls on an object, while dashed arrows
show returns from those calls. A user’s query
triggers the action at the Query Server object
through its “execute search” method. The Query
Server asks its root Profile Server object for any
matches to the query. In response, the Profile
Server returns three possible other Profile
Servers that could contain matches (in addition
to any dataset matches it itself has).
Concurrently, the Query Server executes the
same query on the other Profile Servers. As each
server returns more information, the Query
Server may query yet more and more servers.
Finally, after traversing the digraph in this way,
the Query Server returns the search results in an
XML document.

The Java programming language simplifies
development of concurrent programming such as
that used in the query component. Java includes
built-in keywords and library classes for
threading. However, Sun’s marketing phrase for
Java, “Write Once, Run Anywhere,” is more
hype than reality. In order to encourage
implementations of Java on a wide variety of
computer hardware and operating systems, Sun
underspecified details of Java’s threading
behavior. As a result, behavior of threaded
programs vary from implementation to
implementation. Sometimes, programs hang
(deadlock) even though there is no obvious
deadlock in the code as implemented.

The query service experiences such hanging
behavior. When running in a Windows-based
Java environment, multiple concurrent queries
work correctly and quickly. But on a Linux-
based environment, multiple threads performing
queries hang the query component. Because the

scatter-gather approach to making multiple
concurrent queries is far more efficient than
serially querying remote nodes, we plan on
incorporating a deeper investigation of the code
and of various Java virtual machines for the
Linux platform.

Since the directed graph of resource systems is
not necessarily acyclic, the query component
must take care not to re-query profile nodes it
has already visited, or else it could get caught in
an infinite loop. The query component trivially
prevents this by tracking a set of profiles it has
queried so far.

Once the query component's spiders have
completed their tasks, the query service can
immediately return the resource profiles to the
user or the query service can re-broadcast the
query to the resources identified so that they can
perform the query. In the former case, the query
service assembles the results into a single query
structure and returns it to the user. This scenario
was illustrated in Figure 1 where
XML_QUERY(4) is returned to the client .The
user can access the results document directly or
they can be translated into HTML for
presentation within a web browser. In the web
browser, hyperlinks and additional searches are
set up automatically by the translation process
that enables the end user to immediately fetch
products or visit sites that contain the sought
datasets.

If the query is re-broadcasted to the identified
resources, a similar scenario takes place. Each
resource performs the query, gathers the results
into a query structure, and returns the query
structure to the query service. The query service
then assembles the results into a single query
structure and returns it to the user. This scenario
is also illustrated in Figure 1 where
XML_QUERY(4) returns data results.

Once the query component's spiders have
completed their tasks, the query service
assembles the results into an XML document.
The user can access the results document directly
or it can be translated into HTML for
presentation within a web browser. In the web
browser, hyperlinks and additional searches are
set up automatically by the translation process
that enables the end user to immediately fetch
products or visit sites that contain the sought
datasets.



One possible extension that we are considering
for the query service is to make it available via
the HTTP standard. This would allow HTML
pages to send XML queries through the resource
location service and render results directly into
the HTML document as previously mentioned.

Iv. Profile Service

Instruments and experiments generate science
data products that are archived in data systems.
Unfortunately, these data systems are
heterogeneous and there are few common
standards for querying. This makes locating data
across these systems very difficult. Scientists
and researchers are typically required to visit
each data system independently and use local
tools in order to locate the data. The profile
service that is part of the framework uses
metadata' to describe the data resources that
exist within each data system within a distributed
environment. It refocuses the problem of
interoperability between data systems on
metadata development and enables
interoperability by using a common metadata
interchange language.

The purpose of an OODT profile is to provide a
resource description that is sufficient to
determine if the resource can resolve a query. It
is used by the OODT resource location service to
identify and locate resources within the digraph
and subsequently limit the number of resources
that will have to consider the query. For
example, within a space sciences implementation
of this concept, a query for images of Jupiter
should not have to be handled by the resource
maintaining the Mars Global Surveyor images of
Mars. A profile can be defined as a proper subset
of the metadata that describes a resource and
which is sufficient to determine whether the
resource could resolve a query.

The Extensible Markup Language (XML) was
chosen as the common interchange language for
the OODT profiles. The advantages of XML
include (1) superior expressiveness to HTML by
allowing information-structure specifications,
(2) simplicity compared to SGML in use and

! Metadata is, literally, data about data, or
information that describes the characteristics of
data. For example, 37.6 is data. The fact that
it’s a measurement of a body’s temperature in
Kelvins is metadata. [6]

syntax, (3) wide acceptance as an Electronic
Data Interchange (EDI) standard, and 4) the most
compelling, its flexibility.

The flexibility of XML allowed us to develop a
generic structure for managing resource
descriptions from any science domain.

We defined the XML Extensible Profile
Language (X2PL). X2PL provides both a means
for capturing resource attributes as well as a
language for capturing the attributes of the
information content that the resource manages.
The Document Type Definition (DTD)
specification in Figure 5 illustrates the basic
components of the resource profile. The DTD
specification has three parts: the profile
attributes, resource attributes, and the profile
elements. We’re using a DTD specification since
the technology is readily understood and widely
supported. We will consider XML-SCHEMA
when it becomes a recommendation of the World
Wide Web Consortium (W3C).

The profile itself is described in the
profAttributes section using the attributes shown.
The profld attribute provides a system-wide
unique identifier for a profile instance. The
profTitle and profDesc attributes provide
descriptions of the profile where profTitle is
more terse and appropriate for more frequent
display in user interfaces. The profType
attribute, which is further defined below,
identifies the profile subtype. The '
profDataDictld attribute provides the identifier
of the controlling domain data dictionary. The
profChildld and profParentld attributes allow for
the creation of a profile hierarchy.

<!ELEMENT profiles (profile+)>

<!ELEMENT profile
(profAttributes,
resAttributes,
profElement*) >

<!ELEMENT profAttributes

(profId, profvVersion*, profTitlex*,
profDesc*, profType*, profStatusId*,
profSecurityType*, profParentId*,
profChildId*, profRegAuthority*,
profRevisionNote*, profDataDictId*)>

<!ELEMENT resAttributes

(Identifier, Title*, Format*,
Description*,Creator*, Subject*,
Publisher*, Contributor*, Date*,
Type*, Source*, Language*,

Relation*, Coverage*, Rights*,
resContext*, resClass*, resLocation*)>



< !ELEMENT profElement
(elemId, elemName*, elemDesc™,
elemType*, elemUnit*,
(elemValue |
(elemMinValue, elemMaxValue))™*,
elemSynonym*, elemObligation*,
elemMaxOccurrence*, elemComment*) >

Figure 5: OODT Profile DTD

The resource is described in the resAttributes
section. Since the Dublin Core initiative has
defined an internationally accepted metadata
element set for describing electronic resources,
its 15 recommended elements have been
adopted. A description of this initiative and the
elements is available at http://purl.org/DC/ . The
OODT has added three additional resource
attributes. The resContext element identifies the
application environment or discipline within
which the resource originates and is derived from
a discipline taxonomy. For example,
NASA.PDS.GEOSCIENCE is used to indicate
the resource is associated with the Geoscience
node of the Planetary Data System. The
resLocation provides the location of the resource,
typically represented as a URL. The resClass
element identifies the resource within a resource
taxonomy. Examples values are
system.productServer, application.interface.
data.granule, and data.dataSet.

The profile element section, the third part of the
profile, describes the data content that the
resource manages. For example, the Planetary
Data System (PDS) maintains an inventory of all
science data sets that have been archived in the
system. Within this inventory, the data sets are
indexed on the instrument that collected the data
and the target body that the data was collected
from. The profile element section would include
these indexed attributes as data elements.

Figure 6 shows a portion of the DIS resource
profile. The attributes TARGET_NAME and
DATA_OBIJECT_TYPE are encoded into the
profile element section, indicating that this
resource, the PDS DIS, can handle queries on
TARGET_NAME.

As can be seen from Figures 5 and 6, each data
element is defined using the meta-attributes
elemld and elemValue. To maintain compliance

with developing international standards, these
meta-attributes are consistent with those defined
in ISO/IEC 11179 — Specification and
Standardization of Data Elements. The
description of this standard and the proposed
elements is available at

http://www.sdct.itl.nist. gov/~ftp/18/other/coalitio
n/Coalition.htm .

The basic profile structure as illustrated in Figure
5, actually has three subtypes. This is indicated
by the value of profType. As is apparent, the
profile element section is essentially a data
dictionary. Because of this fact and the need to
address requirements at three levels of
aggregation, the profile structure was specialized
into three subtypes: profile, dataDictionary, and
inventory.

The profile subtype is used to describe one
resource and for this specialization use of the
meta-attributes elemDesc and elemSynonym are
optional. A data dictionary would be the more
appropriate location for these attributes.

<profile>
<profAttributes>
<profId>PROFILE_PDS_DIS</profId>
<profTitle>DIS Profile</profTitle>
<profDesc>Thig profile .. </profDesc>
<profType>profile</profType>
<profDataDictId>PDS_DD
</profDataDictId>
</profAttributes>
<resAttributes>
<Identifier>PDS DIS</Identifier>
<Title>Distributed Inven ..</Title>
<Format>text/html</Format>
<Language>en</Language>
<resContext>NASA.PDS</resContext>
<resClass>application. inventory

</resClass>
<regLocation>http://..pdsbrows.htm
</resLocation>
</resAttributes>
<profElement>

<elemId>DATA_OBJECT_TYPE</elemId>
<elemType>ENUMERATION</elemType>
<elemValue>CUBE</elemValue>
<elemValue>IMAGE</elemValue>
<elemValue>..</elemvValue>

</profElement:>

<profElement>
<elemId>TARGET NAME</elemId>
<elemType>ENUMERATION</elemType>
<elemValue>DEIMOS</elemValue>
<elemValue>MARS</elemValue>
<elemValue>PHOBOS</elemValue>
<elemSynonym>ADS .OBJECT_ID

</elemSynonym>
</profElement>
</profile>



Figure 6: Example Profile - PDS DIS

The next specialization of the profile structure is
dataDictionary. For this specialization all meta-
attributes including elemDesc and elemSynonym
are appropriate and required. In addition, the
preferred values of any enumerated type are the
union of all preferred values over the domain.
For example, in the data dictionary for the
planetary science community, the
TARGET_NAME data element would have a set
of elemValue containing the names of all
planets, satellites, comets, and asteroids.

The final specialization of the profile structure is
the inventory. This profile subtype is a slight
variation on profile and is used to describe
individual data products. For example, an
inventory could be used to profile all the Mars
Global Surveyor images of Mars. This
specialization would minimize space by
eliminating many of the meta-attributes such as
elemDesc.

The final phase of profile development involves
implementing instances of profiles for specific
domains. As is evident, the success of the
distributed resource location concept is
dependent on the existence of domain metadata
captured in repositories such as data (element)
dictionaries. Within such privileged domains, the
registration of resources with the service is
readily accomplished by extracting the necessary
metadata from the domain’s metadata repository,
creating the resource profile, and then registering
the profile with the service. This enables the
successful location of resources within a domain.

The collection of profiles from several domains
would enable the location of resources across
domains, and even raises the possibility of
resource interoperability.

Supporting interoperability between resources
from different domains is strongly dependent on
metadata compatibility, or how well the metadata
spans the domains. For example, two related
domains such as planetary science and
astrophysics both associate one or more target
bodies with most data products. However, unless
the same identifiers are used for a specific target
or a mapping between identifiers is determined,
the attribute will not support resource location

much less interoperability across the domains. In
fact as more sophisticated interoperability such
as data transformation and correlation are
requested, deeper levels of metadata
compatibility will be required. For example,

once a target body is identified, sufficient
metadata must be available for coordinate system
conversion.

The profile, as a set of resource attributes, lends
itself in an interesting way to the task of
distributed resource location across
heterogeneous domains. When considered from
an object-oriented perspective, a resource has
three modes. These are (1) the description of the
resource as represented by the resource’s
attribute values, (2) the instance of the resource
which is obtained by dereferencing the value of
the resource’s location attribute, and (3) the class
definition as represented by the list of resource
attributes and data elements in the profile
element section.

Within the resource location service, a query can
be made for any of the three modes. For
example, the primary role of a profile is to
provide the location of a resource that can
resolve a user query. Once identified, the value
of resLocation is returned with any other
selected profile attributes. As mentioned, the
instance of a resource is obtained by de-
referencing the value of the resLocation attribute.
If a resource profile describes an HTML
interface, the query could return the actual
HTML page by performing a redirection on the
value of resLocation. Finally, the class definition
of a resource can be returned as a guide as to
how the resources can be constrained in a query.

When using metadata to enable interoperability
between domains, the hard problem of finding
metadata commonalities across domains arises.
This typically involves identifying similar
attributes, determining core concepts, possibly
generalizing the concept, and determining the
key name and aliases. The resource location
service has started to address this problem
through the use of the data dictionary
specialization and the use elemSynonym.

V. Product Service

The product service component, like the profile
component, is instantiated as a node in the
distributed architecture and provides the



capability to return data system products based
on a query. This allows each data system to
maintain heterogeneous implementations, but
still integrate into the enterprise architecture.

Each product server node provides the data
access to one or more data systems. A product
server node instantiates a Java-based server that
integrates with the query service and receives
XML-based queries using the XML query
structure explained in Section III as part of the
Query Service. The product server framework
that is provided is a generic Java-based server

10

that dynamically loads query handlers defined
and registered with the service. Once a query is
received by the framework it then notifies each
registered query handler as a separate thread
managed by the product server. This allows the
product server to time out queries to resources
which may not be available. The product server
then packages the results from each query
handler and returns the results using the XML-
defined query definition. These results are then
passed back to the Query Service which
integrates all the results from the distributed
product servers.
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Figure 8. Web interface showing a simple search using the resource location service.

Figure 8 demonstrates a query transaction which
returns a list of products that are available from
various product servers.
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Query handlers provide a wrapper around each
data system interface. This abstracts the data
system away from the enterprise and allows the
query handlers to function as a translation



service. Developers implement query handlers
using Java’s type model, which separates types
from classes using interfaces®. The query
component specifies a standard Java interface to
which query handlers must conform. Developers
creating query handlers define classes that
implement the query handler interface allowing
the product framework to communicate with the
query handlers.

The query handlers are loaded by the product
server and passed the XML query. The query
handlers transform the queries into the system-
dependent query language in order to access the
proprietary interface. This moves the
responsibility for integrating the data-system~
dependent data model onto the data system and
away from the OODT data infrastructure. This is
an important design consideration for
accommodating scalability in a larger enterprise.
An example would be the JPL central PDS node.
Implementation of a query handler for this node
requires that a mapping between the resource
location service XML-based query and the
central node's Sybase RDBMS be implemented.
The query handler would then translate XML-
based queries into a SQL-based query
referencing the schema that was implemented by
the PDS central node. This then provides the
core mapping necessary to allow unique data
system products to be retrieved from their native
environments.

Once products are received by the query handler
they must be transformed into a standard format
that can be exchanged. The XML query
structure defines the result format which allows
for data to be returned in various formats. One
of the requirements of this architecture is to
provide a list of common interchange formats
that imposes a set of standards for
interoperability. The challenge is to provide a
simple set of common formats for images and
text, and require that results that fit into these
categories use these formats for interchange.
This would mean that all images that are in GIF
may need to be converted into JPEG if that was
the chosen format for images. It is important to
point out that results which do not fit into a these
standards can be returned in their native format.

2 An interface in Java is a specification for the
methods of a class. A class that implements a
named interface must provide a definition for

each method specified by interface or else be

marked as an abstract class.
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The goal is to provide flexibility in the
architecture, but where possible promote
standards for interoperability.

Product results are returned as ASCII text, or
base-64 encoding depending on the data type.
Base-64 encoding is used to return complex data
products such as images. In many cases data
systems may be able to return URL identifiers to
data as results, rather than returning the complex
data product. This improves performance by
limiting the amount of data transported back to
the client.

The product server design promotes
interoperability by providing an interchange
capability to allow a common query mechanism
to retrieve products from unique data system
implementations. The design presented allows
distributed data system nodes to maintain their
independence by providing a standard product
server that can be extended to access the
distributed data systems. This design provides a
scalable solution by identifying a standard
language for interoperability, and a framework
for extending that interoperability to each data
system. It also scales by pushing the
implementation requirements onto each
individual data system.

VL Conclusion and Future Work

Products servers are presented as components of
a distributed framework that allows
heterogeneous data systems to communicate and
share data. The components of this framework
use XML, a standard metadata interchange
language that has gained in popularity for
improving the ability for applications to be
integrated through electronic data interchange.
This solution allows for loosely related data
systems to remain distributed, while providing a
content management and interchange capability
for locating specific data products and resources
archived at remote locations.

This component framework promotes the use of
open standards. This architecture will
accommodate changes as XML and standards for
interoperability evolve. Currently, many
organizations are looking at standards for
electronic data interchange and queries using
XML. At time of writing this paper W3C has
Just published a draft set of requirements for an
XML query language [15].



Metadata really provides the foundation for our
solution. The solution presented, although
applied to planetary, astrophysics, and space
science data problems, is not limited to those
disciplines. In fact, the framework is adaptable
based on the metadata definitions that are
defined. This allows for the solution to then be
applied to other disciplines including healthcare,
defense, business, etc. Currently, we are also
investigating use of this framework for locating
and correlating physiologic and treatment data
from pediatric research hospitals distributed
across the United States. The benefit of the
architecture is that it can easily accommodate
different disciplines by refocusing the problem
on metadata development. This means that
industry and disciplines still must decide on
metadata that includes common terms and
definitions or at least mappings between terms
that refer to the same things. Once this metadata
is defined, the architecture provides means for
allowing heterogeneous data systems to
communicate so that advanced data discovery
and mining techniques can be applied and new
relationships discovered.
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